Driver Distraction Recognition Using Wearable IMU Sensor Data

نویسندگان

چکیده

Distracted driving has become a major cause of road traffic accidents. There are generally four different types distractions: manual, visual, auditory, and cognitive. Manual distractions the most common. Previous studies have used physiological indicators, vehicle behavior parameters, or machine-visual features to support research. However, these technologies not suitable for an in-vehicle environment. To address this need, study examined non-intrusive method detecting in-transit manual distractions. Wrist kinematics data from 20 drivers were collected using wearable inertial measurement units (IMU) detect common gestures made while driving: dialing hand-held cellular phone, adjusting audio climate controls, reaching object in back seat, maneuvering steering wheel stay lane. The proposed progressive classification model gesture recognition, including two time-based sequencing components Hidden Markov Model (HMM). Results show that accuracy disturbances was 95.52%. associated with recognizing reached 96.63%, model. overall advantages being sensitive perceptions motion, effectively solving problem fall-off recognition performance due excessive motion samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Driver distraction detection and recognition using RGB-D sensor

Driver inattention assessment has become a very active field in intelligent transportation systems. Based on active sensor Kinect and computer vision tools, we have built an efficient module for detecting driver distraction and recognizing the type of distraction. Based on color and depth map data from the Kinect, our system is composed of four sub-modules. We call them eye behavior (detecting ...

متن کامل

Human Activity Recognition using Wearable Devices Sensor Data

Wearable devices are getting increasingly popular nowadays as the technology products become smaller, more energy efficient and as more sensors are available on our wrist. By wearing these devices everyday, we could easily collect mega-bytes of data each day. In spite of the abundance of available data from these sensors, there isn’t too much information we can tell from these raw data about wh...

متن کامل

pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)

فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...

15 صفحه اول

Sleep Disorder Recognition using Wearable Sensor and Raspberry Pi

Sleep analysis is usually done inside a sleep laboratory under close supervision of doctors with the help of cardiac rhythm using electro cardiography (ECG), breathing patterns, brain activities using electro encephalography (EEG), eye movement using electrooculography (EOG) and muscle activity during sleep. The data collected through these devices is thus utilized for further analysis and has ...

متن کامل

Locating Anchors in WSN Using a Wearable IMU-Camera

Localization in a wireless sensor network (WSN) becomes important for many modern applications, like landslide detection, precision agriculture, health care, and so forth. The more precise the position of an anchor node is, the more accurate the localization of a sensor node can be measured. Since the Global Positioning System (GPS) device cannot work properly indoor, some existing localization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainability

سال: 2021

ISSN: ['2071-1050']

DOI: https://doi.org/10.3390/su13031342